3 research outputs found

    The benefits of mechatronically-guided railway vehicles: A multi-body physics simulation study

    Get PDF
    Mechatronically-guided railway vehicles are of paramount importance in addressing the increasing interest in reducing wheel-rail wear and improving guidance and steering. Conventional passively-guided rail vehicles are limited by the mechanical constraints of the suspension elements. Currently, a typical rail vehicle suspension needs to be sufficiently stiff to stabilize the wheelsets while being complaint enough to negotiate curved track profiles. The suspension is therefore a compromise for the contradictory requirements of curving and stability. In mechatronic vehicles, actuators are used with the conventional suspension components to provide additional stiffness or damping forces needed to optimise a vehicle for a wide variety of scenarios, and not rely on a sub optimal combination of passive components. This research demonstrates the benefits of active guidance and steering when compared to a conventional vehicle using simulation results from a multi-body simulation software Simpack. It also provides insights into the relative performance of the mechatronic schemes. The Simpack modeling allows for a complex model with high fidelity, which provides an additional level of proof of the control algorithms working on a real rail vehicle. Each vehicle is assessed in terms of guidance on straight track, steering on curved track, actuation requirements and wheel-rail wear. Significant benefits are demonstrated in one of the guided vehicles with independently-rotating wheelsets

    Benefits of mechatronically guided vehicles on railway track switches

    Get PDF
    Conventional rail vehicles struggle to optimally satisfy the different suspension requirements for various track profiles, such as on a straight track with stochastic irregularities, curved track or switches and crossings (S&C), whereas mechatronically-guided railway vehicles promise a large advantage over conventional vehicles in terms of reduced wheel-rail wear, improved guidance and opening new possibilities in vehicle architecture. Previous research in this area has looked into guidance and steering using MBS models of mechatronic rail vehicles of three different mechanical configurations - secondary yaw control (SYC), actuated solid-axle wheelset (ASW) and driven independently-rotating wheelsets (DIRW). The DIRW vehicle showed the best performance in terms of reduced wear and minimal flange contact and is therefore chosen in this paper for studying the behaviour of mechatronically-guided rail vehicles on conventional S&Cs. In the work presented here, a mechatronic vehicle with the DIRW configuration is run on moderate and high speed track switches. The longer term motivation is to perform the switching function from on-board the vehicle as opposed to from the track as is done conventionally. As a first step towards this, the mechatronic vehicle model is compared against a conventional rail vehicle model on two track scenarios - a moderate speed C type switch and a high speed H switch. A multi-body simulation software is used to produce a high fidelity model of an active rail vehicle with independentlyrotating wheelsets (IRWs) where each wheel has an integrated ’wheelmotor’. This work demonstrates the theory that mechatronic rail vehicles could be used on conventional S&Cs. The results show that the mechatronic vehicle gives a significant reduction in wear, reduced flange contact and improved ride quality on the through-routes of both moderate and high speed switches. On the diverging routes, the controller can be tuned to achieve minimal flange contact and improved ride quality at the expense of higher creep forces and wear

    Contact force estimation in the wheel/rail interface for curving scenarios through regions of reduced adhesion

    No full text
    © 2017. Regions of extreme low-adhesion between the wheel and rail can cause critical problems in traction and braking. This can manifest in operational issues such as signals being passed at danger, or pessimistic network wide responses to mitigate for localised issues. Poor traction conditions can be caused by oil contaminants, rain, ice, condensation of water droplets (micro-wetting) or leaves on the line, where compressed leaf contamination can cause a rapid decrease in adhesion. The complexity of the problem arises as a result of the inability to directly measure and monitor all the factors involved. There remains a lack of real-time information regarding the state and location of low-adhesion areas across rail networks. On-board low adhesion detection technology installed to in-service vehicles is a suggested method to capture up-to-date adhesion information network wide and minimise significant disruptions and cancellations in railway schedules. This paper extends a principle of a model-based estimation technique previously developed in straight track running for operating in a curving scenario. The vehicle model of focus here will be a high-fidelity, multi-body physics representation of a full-vehicle
    corecore